
 

ISyE 6416 – Basic Statistical Methods – Spring 2016 

Proposal 
 

Team Member Names: Chris Meixell, Eisha Nathan, Chuanping Yu 
 

Project Title: Choosing Between Branch-Based and Branch-Avoiding 
Algorithms for Social Network Graphs 

 

Problem Statement 

Graphs are a natural representation for modeling relationships between 
entities, whether in web traffic, financial transactions, computer networks, or 

society. For basic terminology, let G=(V,E) be an undirected graph, where V 
is the set of vertices and E the set of undirected edges with n=|V| and 
m=|E|, the number of vertices and edges respectively. Define an edge 

e=(u,v) connecting vertices u and v. Graphs can be used to model 
relationships between entities, where the vertices v in V can be thought of as 

players or users, and the edges e in E represent the relationships between 
these players. Assume the graph G is given in adjacency list format, i.e., for 
every vertex v, we have an array of its neighbors, denoted as “list(v)”. Note 

that therefore degree(v) = size(list(v)). Since we are dealing with undirected 
graphs, each edge e=(u,v) in the graph will appear twice in the adjacency list 

representation, once in list(u) and once in list(v).  
 
Specifically, we focus on those graphs modeling social networks. Much 

research of social networks focuses on identifying important players in a 
graph, using some centrality metric. One such metric is clustering 

coefficients, which is useful for finding key players in a network based on 
their local connectivity. This property is calculated using the number of 
triangles a vertex belongs to, making triangle counting an essential 

computation for social network analysis.  
 

A very basic algorithm for triangle counting utilizes list intersections. Suppose 
we are given an edge e=(u,v). If vertices u and v have any common 
neighbors (denote the common neighbor as w), they will be found using a list 

intersection of list(u) and list(v). The triangle is then the one formed by 
vertices u, v, and w. We are presented with two algorithms for computing list 

intersections: a branch-based approach, and a branch-avoiding approach (as 
we will explain further below). The algorithm for triangle counting is then to 

iterate through every edge in the adjacency list, compute list intersection for 
the two vertices in question, and increase the triangle count for any vertex 
found in the intersection. Therefore, we will need to compute 2m list 

intersections, one for each edge as it appears in the adjacency list (note 
again the factor of 2 because each edge appears twice).  

 
In many algorithms dealing with massive amounts of data, branch prediction 
is an important consideration when concerned with performance of these 

algorithms. “Branching” in an algorithm refers to the algorithm making a 



choice to do one of two or more things; the simplest and most common 
programming example is the “if” statement. From a performance 

perspective, the presence of a conditional branch in an algorithm will 
interrupt the flow of instructions; if the algorithm does not know beforehand 

which branch to take, the processor will not know which instruction to fetch 
next, which will stall the pipeline, impeding fast runtimes. Therefore, 
previous research has explored branch-avoiding algorithms as alternates to a 

typically branch-based approach to many graph centric problems.  
 

For our purposes, we are given two algorithms to calculate list intersections 
as mentioned above. For the scope of this project, we take the two 
algorithms as given and analyze the data resulting from execution times as 

explained below. Denote the branch-based approach as BB and the branch-
avoiding approach as BA. Previous research shows that the branch-based 

approach is faster overall than the branch-avoiding approach for list 
intersections, where “total” refers to the total time for all 2m list 
intersections. However, examining individual execution times, where 

“individual” refers to the list intersection required for processing each edge, 
shows that approximately 30% of the time, the branch-avoiding approach 

outperforms the branch-based approach. This suggests there may be a 
hybrid approach of both BA and BB that achieve an optimal runtime for 

counting triangles. This gives rise to the question that we seek to answer: for 
an edge in the graph, can we predict which approach to take (BA or BB) to 
calculate the list intersection of the two corresponding vertices of the edge, 

given some parameters of the edge? For example, for an edge e=(u,v), 
possible parameters include size(list(u)) and size(list(v)). After compiling a 

list of these parameters for each edge, we wish to identify if we can predict 
which approach (BB or BA) will outperform the other and which approach 
would be ideal for a hybrid approach.  
 

Data Source 

We will use graphs from the DIMACS 10 Graph Challenge, which are widely 
used in social network analysis research. As a result of current research 

projects in the HPC lab in CSE, preexisting code will be used to generate the 
data. Since we assume the graph is in adjacency list format and each edge is 

appearing twice, we will have execution times for 2m edges, where m is 
again the number of edges in the graph.  
 

As an example, the data may look like the following: 
 

Edge Branch Avoiding (s) Branch Based (s) 

e1=(u1,v1) 0.00123 0.00456 

e2=(u2,v2) 0.00223 0.00111 

... ... ... 

Total 0.0953 0.0843 

 
For each edge parsed in the adjacency list, we have execution times for both 
BA and BB for the respective list intersection as well as the total times for 



each. In some cases we see that the individual execution time for BA is less 
than the corresponding one for BB, but the overall runtime of BB is faster 

than BA.  
 

Additionally, as mentioned earlier in the Problem Statement section, we will 
have a set of parameters for each entry, i.e., features for each edge. Let 
“avg” denote the average degree in the graph. At present, we will consider 

features: (1) size(list(u)) -- integer, (2) size(list(v)) -- integer, (3) 
degree(u)<avg -- boolean, (4) degree(v)<avg -- boolean, but more features 

may be added later.  
 

Methodology 

-try a couple different classifiers 

**linear classifier: tuning different parameters… try simulated 
annealing/iterative local search to pick best parameters?  

-variable selection: which parameters actually matter? 

-logistic regression 

 

--not too technically oriented 

 --just overarching descriptions 
 
Our methodology will mainly consist of implementing various classifiers and 

evaluating which model best fits our data. Before training the data to get the 
model, we can divide the data into two sets, training set, and test set. Here 

we may use different ways to get the training set and test set. Use the 
training set to obtain the regression models as stated below in descriptions of 
various models we may try, and then use the test set to see the accuracy of 

correctly finding the best algorithm for each model. The model that has the 
higher accuracy will be considered more effective than the others.  
 

Linear regression 

Let y1 be the execution time for the branch-based algorithm (BB) and y2 be 
the execution time for the branch-avoided algorithm (BA). Based on the 

features, x1, x2, …, xp, for each edge, we can get the regression model 
y1 = a0 + a1*x1 + a2*x2 + … + ap*xp 

y2 = b0 + b1*x1 + b2*x2 + … + bp*xp 

Then, if y1-y2>0, BA is better than BB; if y1-y2=0, BA is the same as BB; if 
y1-y2<0, BB is better than BA.  
 

Logistic regression 

Let “z = 0” represent BA is better than BB, that is, the execution time of BA 
is less than that of BB; “z=1” represent BB is better than BA, that is, the 

execution time of BB is less than that of BA, and z follows Bernoulli(p). Then 
based on the features for each edge, we can get the logistic regression model 

p = h(c0 + c1*x1 + c2*x2 + … + cp*xp), where h(x) = 1/(1+exp(-
x)). 

If p>0.5, it means that the probability of “z=1” is greater than that of “z=0”, 
so BB is better than BA; otherwise, BA is better than BB.  
 



Support Vector Machine 

Use the similar assumption as in the logistic regression: Let “z = 0” represent 

BA is better than BB, that is, the execution time of BA is less than that of BB; 
“z=1” represent BB is better than BA, that is, the execution time of BB is less 

than that of BA. Then based on the features for each edge, we can get the 
SVM classifier: 

w1*x1+…+wp*xp – b >= 1 , then z = 1, that is, BB is better than BA; 

w1*x1+…+wp*xp – b <= -1, then z = 0, that is, BA is better than BB. 
 

Kernel SVM 

Use the Kernel method to redo the above classification. We will try different 

Kernel functions and pick the best one among them.  
 

Confidence Intervals 
Once the parameters are fixed using the best model as evaluated above, we 

will attempt classification of an edge based on confidence intervals. Our 
tentative methodology will be as follows. Assuming an on-the-fly learning 
approach, we will parse the data edge by edge. Denote y1 as the execution 

time for the BB approach for an edge, and y2 as the execution time for the 
BA approach for an edge. Using these yI’s as `data,’ we will calculate the 

confidence intervals at each stage (after each edge is processed). Essentially 
after edge i, we will have 2 confidence intervals: one for the estimation of 
the execution time for BA for edge i and one for the estimation for BB for 

edge i. We will continue estimating the intervals edge by edge until we have 
sufficient separation between the two confidence intervals. This will enable us 

to better predict algorithm times given an edge.  
 
Additional Experiments 

We will also consider any effects random sampling of edges and scanning 
order of the edges. For example, we will investigate if we obtain a better 

model, perhaps on less training data, by shuffling the order we parse the 
edges.  
 

Expected Results 

Our aim is to find a hybrid approach that, given an edge e=(u,v), chooses 
the fastest of the two list intersection algorithms BA and BB with as near to 
100% accuracy as possible. Such accuracy could save significant execution 

time in finding the clustering coefficients of a graph’s vertices. However, a 
hybrid approach with less than perfect accuracy could require more execution 

time than either BA or BB individually. 

Define the variables below for some graph G with m edges. Also, let us 
assume that BA is faster than BB for 30% of the edges in G. 

 

 μBA=average execution time of BA on an edge in G. 

μBB=average execution time of BB on an edge in G. 

μΔBA=average execution time savings when BA outperforms BB. 
μΔBB=average execution time savings when BB outperforms BA. 
 



With 100% accuracy, a hybrid approach would be faster than BB overall by 
(0.6m)μΔBA since for 30% of the 2m executions, we would save μΔBA in 
execution time. 

With 0% accuracy, a hybrid approach would be slower than BB overall 

by(1.4m)μΔBB since for 70% of the 2m executions, we would spend an 
additional μΔBB in execution time. 

With accuracy between 0% and 100%, a hybrid approach would require 

between (2m)μBB -(0.6m)μΔBA and (2m)μBB+(1.4m)μΔBBin execution time, 
depending how accurately it chooses BA over BB versus BB over BA. For 

example, if μΔBA>μΔBB, then the best hybrid approach with X% accuracy 
would be the one that only inaccurately chooses BA over BB and never 
inaccurately chooses BB over BA. It is possible that, for most graphs, μΔBA 

and μΔBB will be statistically equivalent, but we have yet to explore this. 

Additional future work will be application to large social networks. Although 

we will test our hybrid approach within graphs much smaller than those in 
many current social networks, we expect that our test graphs will be of 
sufficient size to not hinder future applicability. Increasing the size of a 

network graph should not affect edge-by-edge comparisons of BA and BB. It 
should only increase the number of edge-by-edge comparisons necessary to 

calculate the clustering coefficients of all vertices in the network graph. 

 

 

 


